2024년도 대한전자공학회 하계종합학술대회 초청강연 발표준보

▮발표자 정보

성명	이오준		
소속(학교)	가톨릭대학교		
부서(학과)	인공지능학과		
직위	조교수	사진	
발표분야	그래프 신경망을 이용한 분자구조 분석 및 후보물질 스크리닝		
약력	* 학력, 경력, 연구실적, 주요연구 및 관심분야를 기술해주세요. 2021.09~현재: 가톨릭대학교 조교수 관심분야: 그래프표현학습, 그래프신경망, 소셜네트워크분석		

■초청강연 정보

제 목	Analyzing Molecular Structures with Graph Neural Networks		
	This talk introduces and discusses the role of Graph Neural Networks		
	(GNNs) in molecular structure analysis in computational chemistry a		
	biology. Our focus will be on the adaptation and optimization of GNN		
	models designed to handle the complexity of structures of molecules,		
	proteins, etc. These models are particularly adept at capturing the		
	topological and feature-based relationships inherent in molecular		
	graphs, facilitating interpretation and robust prediction. We present a		
Abstract	systematic overview of the latest methodologies in GNNs, including		
	novel training techniques and model designs that improve model		
	interpretability and prediction performance. In addition, case studies		
	will be discussed to demonstrate the practical applications of these		
	models. This presentation aims to provide a comprehensive		
	perspective on the current state and future prospects of GNNs,		
	underscoring their critical contribution to accelerating drug discovery		
and material innovation through sophisticated AI-driven an			